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The characteristics of the spatial eigenmodes of vertical-cavity surface-emitting lasers with a large circular
aperture are considered close to the lasing threshold. Experiments yield patterns based on rotational symmetry
(“flowerlike” patterns) or on Cartesian symmetry(stripelike patterns) for very close operating conditions. The
former are compatible with the boundary conditions whereas the latter are expected in infinite devices. Theo-
retically, the problem is considered in the framework of an eigenmode analysis of a linear partial differential
equation for the optical field valid at threshold. This formulation allows for a simple implementation of
asymmetries due to the reflection properties of Bragg mirrors as well as of transverse variations of gain and
refractive index due to the device structure or due to imperfections in the growth process. A sharp transition
between flowerlike modes and stripelike modes is shown to occur, if the device aperture is increased.
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I. INTRODUCTION

The spatial mode structure of vertical-cavity surface-
emitting semiconductor lasers(VCSELs) has been a subject
of considerable research during the last years(see, e.g., Refs.
[1–11].

To a great extent, this is due to the fact that the spatial
structure determines the spatial coherence and thus the bril-
liance of a laser beam, which is important, if large-aperture
VCSELs are considered for high power application as free
space communication, laser pumping or medical applications
[4,12,13]. However, VCSELs are also investigated due to a
general interest in spatial self-organization phenomena and
pattern formation[5–7,9].

In squareVCSELs stripelike modes were observed[5,14]
which resembled very closely transverse Fourier modes
(plane waves propagating off-axis of the resonator) and not
Hermite-Gaussian(or LP) modes of high order. Emission of
a single traveling plane wave is predicted for generic laser
models[15,16] and the counter-propagating wave resulting
in the observed stripe pattern can be generated due to bound-
ary conditions in a laser with finite extent(e.g., Ref.[17]).
Hence, the observed nonlinear pattern is also a mode of the
linear laser structure. Beautiful example of more complex
patterns arising due to interference of tilted waves reflected
at the boundary conditions in square lasers were demon-
strated in[9,18,19].

In lasers with acircular aperture[7], the boundaries are
obviously not compatible with emission of an ideal trans-
verse Fourier mode. Correspondingly, emission was found to
be dominated by modes with a high order of(discrete) rota-
tional symmetry being similar to Laguerre-Gaussian modes
of high azimuthal order, nevertheless, also modes based on a

Cartesian symmetry and even stripelike modes were ob-
tained, indicating that the selection between the different
types is only “weak”(we use the term “Cartesian symmetry”
to characterize stripelike modes as well as Hermite-Gaussian
modes, see Sec. III for a more detailed discussion). In this
paper, we are going to address the spatial mode structure of
broad-area VCSELs in more detail. After a presentation of
some experimental results, the question of pattern and sym-
metry selection at the laser threshold is addressed by an
eigenmode analysis of a linearized partial differential equa-
tion for the optical field valid at threshold.

Our theoretical approach differs in some respect from the
one conventionally taken in the determination of the thresh-
old mode. Typically, analysis starts with a calculation of the
eigenmodes of the “empty” cavity, i.e., the properties of the
gain medium are not considered at this stage, though the
calculation of the electromagnetic properties can be quite
complete and rigorous reaching the level of fully vectorial
calculations Refs.[8,20–22]. Then the modal gain is ob-
tained by calculating overlap integrals of(material) gain and
mode profiles(see, e.g. Refs.[8,23] for device structures
similar to the one analyzed by us). Note that the material
gain has a spectral dependence which might be important.
This finally enables one to determine the mode selected at
threshold.

In contrast, we obtain the modes of the field generated at
threshold by considering a linearized equation for the laser
field at threshold under certain lateral-boundary conditions.
The eigensolutions of the such problem with highest growth
rate give the spatial distribution of field at threshold, auto-
matically taking into account both the symmetry of resonator
and the properties of the active medium, included in the “un-
derlying” system from which the linearized problem was ob-
tained. This equation derived in Refs.[11,24–26] includes a
general mechanism of pattern selection in lasers, based on a
detuning of cavity resonance from a gain maximum*Email address: nloiko@dragon.bas-net.by
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[15,16,27], as well as a mechanism based on the spatial an-
isotropy created by Bragg reflectors. The problem is nonlo-
cal, in general, mainly due to the influence of the Bragg
reflectors. For the case of infinite homogeneous device it was
solved using the transverse Fourier transformation
[11,24–26], and it was shown, that due to this anisotropy,
only two spatial Fourier modes have the lowest threshold
instead of the whole continuum of modes with the same
transverse wave number as in the isotropic problem. There-
fore, for the anisotropic case, it is possible to gain some
information on regular pattern formation already in thelin-
ear approximation, whereas in the isotropic case the nonlin-
ear competition is strictly important for a further selection of
modes.

Here, we study the problem for a transversely bounded
device. To formulate a well defined mathematical problem,
we approximate the nonlocalities by local terms(differential
operators) using a technics similar to one developed in Ref.
[28]. After this approximation we obtain an eigenproblem for
a partial differential operator of the fourth order, which under
suitable boundary conditions possesses a discrete spectrum.
The eigenfunction with largest real part of eigenvalue gives
the field distribution near threshold.

This formulation allows also for a simple implementation
of transverse variations of the current(gain) or/and refractive
index profiles. These inhomogeneities might be intended
(e.g., the oxide aperture present in modern VCSEL device),
due to parasitic effects(e.g., thermal lensing) or due to im-
perfections in the growth process. Hence, we are able to
investigate how the spatial modes are affected by the bound-
ary conditions and inhomogeneities inevitably present in any
real semiconductor device.

We show that the symmetry properties of the field distri-
bution at threshold depend very sensitively on the inhomo-
geneities and the diameter of the laser, and the transition
between different types of symmetries can be very sharp.

The paper is organized as follows: Sec. II gives the ex-
perimental motivation of the work, clearly showing that cir-
cular large-aperture VCSEL can generate both flowerlike and
Cartesian modes. Our theoretical approach is explained fur-
ther in Sec. III, where the eigenproblem is first formulated
and comparison with traditional rotationally symmetric sys-
tems is provided. In Sec. IV, the symmetry transitions with
changing laser diameter are investigated in detail. In Sec. V
the influence of inhomogeneities on the field distribution is
examined. Section VI contains a summary and discussion of
the results. The derivation of the linearized equation, as well
as its approximation to obtain a local one, and methods of
numerical solution of corresponding eigenproblem are ad-
dressed in Appendixes.

II. EXPERIMENT

In the following, we will describe some experimental re-
sults on spatial structures observed in broad-area bottom-
emitting VCSELs. The aim of this section is to provide a
motivation for the theoretical studies on symmetry proper-
ties, not a detailed study of device characteristics. Several
aspects of devices of the type used were investigated before

in Refs.[4,7,12,13]. We refer to these papers for details.
The devices under study are based on InGaAs/GaAs

quantum wells embedded in a spacer layer with a thickness
of one wavelength(Fig. 1). The emission wavelength is in
the 950 nm spectral region. The cavity is closed by Bragg
reflectors (p side: 30 stacks, reflectivity of nominally
R1.0.9998;n side: 20.5 stacks,R2.0.992). The p side is
textured by etching mesas down till the spacer layer which
carry thep-contact pads. The size of the active area is de-
fined by a 30 nm-thick oxide aperture which provides the
current as well as the optical confinement. Emission takes
place through the thinned, nearly transparent substrate. This
bottom-emittinggeometry provides a better uniformity of the
current and carrier distribution in the active layer than a top-
emitting one(i.e., where the emission is coupled out through
the p mirror) since in this case thep-contact pad has to be
ring shaped[29]. This was checked in our devices by taking
images of the near field spontaneous emission profile well
below threshold which should indicate the spatial carrier dis-
tribution. The observed irradiance is homogeneous to within
10–20 % but still has the maximum at the perimeter of the
laser (and a local minimum at the center) due to residual
current crowding at the oxide aperture. This is in agreement
with the calculations presented in Ref.[29].

The metallizedn side of the wafer is attached to a thin
copper submount with a central bore for the emission. Thep
side is contacted with the help of a probe tip. Perturbations
induced by the probe tip can be kept very small, if the con-
tact is done at the perimeter of the contact pad. This is due to
the fact that the diameter of the contact pad is slightly larger
than the one of the active zone(e.g., 80mm compared to
54mm) and therefore a direct stress can be avoided. The wa-
fer investigated has very similar nominal characteristics as
the wafer considered in Ref.[7]. In one case, we present
results from a device with a diameter of 38mm, whosep
contact is soldered on a diamond heatspreader(Fig. 1, Ref.
[4]).

The experimental setup is rather simple. The copper sub-
mount with the VCSEL is attached to a thermoelectric cool-
ing (Peltier) element for temperature control and stabiliza-
tion. The output light is collected with an aspheric lens and
focused on a charge-coupled device(CCD) camera such that
the contrast of the boundary of the active area is optimized
for the spontaneous emission below threshold. This corre-
sponds to a near field imaging of the time-averaged intrac-

FIG. 1. Bottom emitting VCSEL soldered junction down on a
diamond heat sink.
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avity field intensity. Alternatively, the back focal plane of the
collimator can be imaged on the CCD camera providing ac-
cess to the far field intensity distribution of the emitted light.
A combination of a Fresnel rhomb and a Glan-Thompson
linear polarizer serves for polarization resolved detection.

Figure 2 shows a typical pattern observed close to thresh-
old in devices with a diameter of 54mm. It is a flowerlike
pattern[Fig. 2(a)], i.e., it is characterized by a nearly circular
arrangement of bright peaks at the perimeter of the laser. In
the example presented here, the line of peaks has a defect in
the upper left part of the laser. Similar defects are not untypi-
cal, but circular flowers exist also(see also the images in
Ref. [7]). The average pitch along the perimeter is on the
order of some micrometer(here 7mm). Near[Fig. 2(a)] and
far field [Fig. 2(b)] are rather similar but not exactly identi-
cal. This indicates that the structure is close to but not iden-
tical to a Laguerre-Gaussian mode.

These patterns should be considered as typical represen-
tatives of flowerlike patterns(see also Figs. 3 and 8 of Ref.
[7]). They are obviously related to the principal circular sym-
metry of the laser which might be perturbed by some inho-
mogeneities.

Figure 3 shows a pattern obtained in a laser from the same
array, i.e., from a laser, which should have very similar prop-
erties as the laser discussed before. Nevertheless, the ob-
served pattern is quite different. In the near field it consists of
a sequence of stripes which do not fill the aperture[Fig.
3(a)]. The far field is dominated very much by two peaks
[Fig. 3(b)] indicating that the pattern is better characterized
as stripes, i.e., as a transverse Fourier mode, than as a
Hermite-Gaussian mode.

This issue is investigated further in Figs. 3(c) and 3(d).
The amplitude of the lines is not uniform across the
device—as it should be for perfect stripe patterns—but peaks
at the sides. The amplitudes between center and perimeter
have a ratio of about 0.5:1. However, in the far field pattern,
the amplitude ratio is about 1:10, i.e., it is much lower than
in the near field. Thus the observed structure is clearly not a
Hermite-Gaussian mode, since Gaussian modes are self-
similar on propagation. Thus we conclude that the boundary
conditions do not permit the emergence of ideal stripes but
that the observed patterns is a realization which is compat-
ible with boundary conditions and possibly inhomogeneities.
Similar structures were reported for other wafers in Ref.[7].
Apart from these stripelike structures and the flowerlike
ones, patterns with a Cartesian symmetry are observed of

which near and far field are rather similar(Fig. 4 of Ref.[7]).
The data show that in the wafer under study apparently

the selection between modes with dominant rotational and
Cartesian symmetry is weak, i.e., apparently small distur-
bances decide over the symmetry. This is further exemplified
by the fact that sometimes the symmetry of the pattern
changes in the course of time at nominally constant operating
conditions. This happens probably in situations in which the
strain on the device due to the contact tip is not negligible
and some mechanical relaxation occurs which changes the
stress condition. Such an observation also indicates that
slight disturbances can mediate the transition from one situ-
ation to the other.

Figure 4 shows a situation, in which the near pattern field
pattern at threshold does not fill the aperture[Fig. 4(a)]. The
structures shows modulation across both axis and is rather
irregular. The far field is dominated by off-axis contributions
[Fig. 4(b)]. These observations indicate the existence of a
gradient inhomogeneity in the device which might be either a
gradient in cavity resonance or in pump current.

Interestingly, this inhomogeneity becomes smaller, if the
current is increased[Fig. 4(c)] and essentially disappears for
even high currents[Fig. 4(e)]. At the same time, the spec-
trum broadens to the high-frequency side reaching a width of
about a THz(about 3.2 nm) for the conditions of Figs. 4(e)
and 4(f). This indicates that the high-order transverse mode
which are increasingly detuned from the longitudinal reso-
nance have a higher rotational symmetry than the ones with
a low detuning. This hints to the fact that the observed gra-
dient inhomogeneity is due to a gradient in cavity length. Its
existence is well known(e.g., Ref.[7]), if not the best por-
tion around the center of the wafer are considered.

FIG. 2. Typical pattern obtained in the dominant polarization
component at 10% above threshold in a device with a diameter of
54 mm. (a) Near field,(b) far field.

FIG. 3. Threshold pattern in the dominant polarization compo-
nent in a device with a diameter of 54mm (images shown obtained
at 10% above threshold). (a) Near field,(b) far field, (c) cut through
near field intensity distribution along line indicated,(d) cut through
far field intensity distribution along line indicated.
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III. THE EIGENPROBLEM AND MODE SELECTION

Motivated by the experimental observations, we are going
to consider below the mode structure of broad-area VCSELs
and the symmetry selection theoretically. We assume that the
laser has a well defined linear polarization, that allows one to
simplify the system description. That assumption stems from
the fact that small(to a great extent uncontrolled) anisotro-
pies select usually a well defined polarization state at thresh-
old (e.g., Refs.[30–32], and references therein). Moreover,
the patterns obtained in the two polarization components are
similar as a rule that implies common mechanisms of their
formation, so the extension to a vectorial model is rather
straightforward.

As is known, there are two distinct types of descriptions
for a laser operating near the lasing threshold. In the first one
which is mostly used for small-aperture devices, the field
esx,yd is decomposed into transverse eigenfunctions of the
empty cavity [8,23,33]. Then, the modal gain needs to be
computed by an overlap integral of the gain and the modal
profile taking into account the frequency dependence of the
material gain. After this procedure, it is possible to determine

the mode with the lowest threshold. However, the shape of
this mode takes into account only the properties of the empty
cavity (boundary conditions and possible inhomogeneities).

The alternative approach was developed for a homoge-
neous laser with a large aperture in the limit of an infinitely
extended system[15,27]. In that case the eigenmodes and
their growth rates can be directly obtained from a linear sta-
bility analysis of the nonlasing zero solution of the nonlinear
partial differential equations(PDEs) governing laser dynam-
ics. The resulting eigenmodes are plane tilted waves(trans-
verse Fourier modes) with definite wave vectors and their
growth rates depend on the detuning of the longitudinal cav-
ity resonance from the gain maximum[15]. For a laser with
losses independent from wave vector orientation, those plane
waves are selected by the critical value of wave number, i.e.,
by the modulus of transverse wave vector, and therefore the
situation is highly degenerate. The pattern selection can be
obtained only by taking nonlinear interactions into account
(see, e.g., Refs.[27,34]).

As it was shown in Refs.[10,11,25] and confirmed by a
more rigorous model[35], the rotational symmetry is broken
for off-axis emission with a defined polarization even in the
infinitely extended laser. This is due to the fact that the re-
flection coefficient of the Bragg reflectors enclosing the cav-
ity depends on the angle between polarization vector and
wave vector. For linear polarized wave there are two oppo-
site directions of transverse wave vectors, with maximal re-
flection [56]. As a result, only two tilted waves(being the
complex conjugates from each other) have minimal losses
and become critical at the first laser threshold. In other
words, there is a selection not only of the critical wave num-
ber but also the wave orientation due to the linear mecha-
nism in comparison with the mentioned above case of a laser
with isotropic cavity. The nonlinear competition takes place
only between two selected traveling waves and standing
wave created by them. This problem was discussed in Ref.
[26].

In the case of square devices[5,35], those transverse Fou-
rier modes are compatible with the lateral boundary condi-
tions, and hence can be selected at threshold when the trans-
verse area is finite. It is well known, that Gauss-Hermite
modes(e.g., Ref.[36], for curved mirror resonators or wave
guides with a parabolic refractive index profile) or Fourier
modes (for homogeneous apertures) are the appropriate
choice of eigenfunctions. In the latter case, the simplest pos-
sibility is a stripe pattern aligned to one of the sides. We will
refer to these modes as “stemming from Cartesian symme-
try” or shortly as “modes with Cartesian symmetry,” since
they have typically only a low-order rotational symmetry.

For circularly shaped devices with conventional isotropic
mirrors, the situation is more complicated. The eigenmodes
of the empty cavity satisfying the lateral ring boundary con-
ditions are Gauss-Laguerre modes(in devices with a para-
bolic refractive index profile), the so-called LP-modes(lin-
early polarized modes based on Bessel functions) in devices
with (weak) step-index wave guides(e.g., Ref. [37]) or
Bessel modes in devices with a homogeneous refractive in-
dex profile. As in the infinite device these modes are highly
degenerate in the case of rotationally symmetric systems,
since the modes, obtained by a rotation by any angle, have
the same growth rate at threshold.

FIG. 4. Patterns obtained in the dominant polarization compo-
nent in a device with a diameter of 38mm mounted on a heat sink.
(a),(c),(e) Near field and(b),(d),(f) far field. Distance above thresh-
old: (a),(b) 6% (however the pattern is identical to the one obtained
at 3% above threshold except for the fact that the contrast of the
latter is lower); (c),(d) 56%; (e),(f) 938%.

BABUSHKIN, LOIKO, AND ACKEMANN PHYSICAL REVIEW E 69, 066205(2004)

066205-4



We show below that if we account for the anisotropy in-
duced by the Bragg reflectors(and possibly other imperfect-
ness of the cavity), the mode appearing at threshold cannot
be a pure rotationally symmetric or a pure stripelike modes,
but something intermediate. In such an anisotropic situation
only a few modes have the same threshold, and the pattern
selection problem can be considered already on the stage of a
linear approximation. Therefore we investigate an equation
of the type

] esx,y,td
] t

= Ôsx,ydesx,y,td, s1d

whereÔsx,yd is a linear operator, acting insx,yd space on the
transverse profileesx,y,td of the optical field at the laser
threshold. From Eq.(1), the following eigenproblem is ob-
tained:

Ôsx,ydegsx,yd − lgegsx,yd = 0. s2d

Here, hgj parametrizes the set of eigenmodesegsx,yd with
eigenvalueslg which are the spatial field distributions grow-
ing as a whole with rate Relg.

For a homogeneous device of an infinite aperture, the
spectrumlg of Eq. (2) is continuous with eigenfunctions
being transverse Fourier harmonicseg=expsikr d [where k
=skx,kyd and r =sx,yd]. Their selection described above is
determined by a maximal value of Relg defined from the
following dispersion relation:

Oskx,kyd = lg, s3d

whereOskx,kyd is defined through a transverse Fourier trans-
form F of the fieldegsx,yd

F:egsx,yd ° egskx,kyd =E egsx,yde−iskxx+kyyddxdy, s4d

as a multiplication in the transverse Fourier space:

FfÔsx,ydegsx,ydg ° Oskx,kydegskx,kyd. s5d

The eigenproblem(2) with proper boundary conditions has a
discrete spectrum, and it is evident from the physical nature
of the problem that Relg is bounded from above. In the
following, we suppose that alllg are arranged in the order of
decreasing of their real values: Rel1ùRel2ùRel3. . . .

Such an approach includes both the frameworks men-
tioned: on one hand, the eigenproblem with certain lateral-
boundary conditions accounts for the peculiarities of the
empty cavity(such as the transverse shape of the device and
inhomogeneities of the transverse area of the cavity[38,39]);
on the other hand, this equation is the linearization of equa-
tions describing the laser at threshold that allows to take into
account wavelength selection mechanism due to an interac-
tion of light with active medium[34] and pump spatial pro-
file. We restrict ourselves only to this linearized problem,
leaving more complex effects as the influence of spatial hole
burning [26,33,38,40] and the nonlinear competition of
eigenmodes with nearly the same growth rate for further
more detailed investigations.

Derivation of the Eq.(1) with operatorÔsx,yd from basic
laser equations is presented in Appendix A. In general, it is a
pseudodifferential operator[41] including nonlocal integral
terms. They arise because a part of the operator describing
the light interaction with Bragg reflectors of the laser cavity
is defined through the action in transverse Fourier space(4).
However, it is possible to approximate this operator by a
partial differential operator of the type

Ôsx,yd = o
i,j=0

4

s− idi+jaij
]i+j

] xiyj . s6d

The fact that the equation is of fourth order(instead of
second) ensures the existence of a maximum of the disper-
sion curve(3) for nonzerok at suitable parameters as for an
infinite homogeneous device. The derivation of such an ap-
proximation is described in Appendix B.

The coefficientsaij are complex-valued in general. The
imaginary part of coefficients appears from two different
sources. The first one is the usual diffraction term of the form
iaD (whereD is transverse Lapalcian, anda is a diffraction
coefficient). It gives a contribution only to coefficientsa02
anda20. The second part giving contribution into allaij is a
result of the field phase shift at reflection from the complex
distributed Bragg structure.

The simplest way to model of the finiteness of a real
device is imposing of zero boundary condition foregsx,yd at
the end of aperture. For a circular aperture it takes the fol-
lowing form:

egusx,yduur u2=R2 = 0. s7d

This condition is confirmed by the fact that both gain and
field intensity decrease rapidly close to the aperture. In fact,
this condition is not sufficient for a solution of Eq.(6), be-
cause this equation is of fourth order. One should provide a
second boundary condition including the derivatives of the
field which has to satisfy so called Lopatinsky(or ellipticity)
condition [41]. It is clear that the second condition also
should be consistent with the decreasing of the field far away
from the aperture Therefore some combination of spatial de-
rivatives of the field should be zero. From the reflection sym-

metry of the operatorÔsx,yd, it follows that this combination
can contain only derivatives of even order. In general, the
second boundary condition must be

T̂egusx,yduur u2=R2 = 0, s8d

whereT̂ is

T̂ = t
]2

] x2 +
]2

] y2 . s9d

with complex coefficientt. We do not assume in this paper
any anisotropy introduced by boundary conditions, hence we
should taket=1. Then the second condition becomes the
same as for an isotropic device which arises automatically in
the last case due to reducing the operator(6) to the next one:

EIGENMODES AND SYMMETRY SELECTION… PHYSICAL REVIEW E 69, 066205(2004)

066205-5



Ôsx,yd = b1D2 + b2 D + b3, s10d

[b1,b2,b3 are some(in general complex) coefficients], and
due to the equality(7). One can easily recognize in Eq.(10)
the linear part of the well known Swift-Hohenberg equation
[16,27], describing the evolution of a laser field near thresh-
old. Therefore, the anisotropic operator(6) corresponds to a
generalization of the spatial parts of the Swift-Hohenberg-
like order parameter equations[16,34] obtained from the
usual “uniform-field”-models often used to model pattern
formation problems in cavities[15,16,34,42], since it allows
for an asymmetry ink space.

To the best of our knowledge, there is no analytical solu-
tion of the general eigenproblem(2) with the operator(6).
However, the problem can be solved numerically by reduc-
ing this equation to a system of two equations of second
order (see Appendix C). For that, an auxiliary function is
introduced and the simple numerical procedure can be used
when the zero boundary condition as Eq.(7) is imposed on
it. However, this corresponds to the use of second boundary
condition(8) of the original problem withtÞ1. The value of
this parameter is determined by the inner anisotropy of the
operator(6). It is comparatively small, and the obtained so-
lution is very close to a solution of the problem with isotro-
pic boundary condition(8) with t=1 (see Appendix C).

It will turn out, that the anisotropy of the problem and the
circularly boundary conditions are competing in the determi-
nation of the eigenfunctions of(6). Hence, with decreasing
diameter of the aperture the solutions of the problem under-
goes a transition from a solution which is a superposition of
two transverse Fourier modes(as for the infinite aperture
case) to the flowerlike eigenfunctions of the isotropic opera-
tor (10). In the following section we consider this transition,
taking as a starting point the problem(2) with the operator
(6) and boundary conditions(7),(8).

Up to now, we assumed a homogeneous pump and refrac-
tive index profile. However, in real devices there are addi-
tional inhomogeneities of current density, resonator length or
refractive index. To describe index inhomogeneities, given
by nisx,yd, and to take into account possible inhomogeneity

of the current densitydm the operatorÔsx,yd should be con-
sidered in the following form:

Ôsx,yd = o
i,j=0

4

s− idi+jaij
]i+j

] xiyj + i lnisx,yd + g00dmsx,yd,

s11d

where the derivation and the coefficientsg00,l are addressed
in Appendix B. The influence of inhomogeneities in Eq.(11)
on symmetry properties of the eigenmodes is considered in
Sec. V.

IV. THE COMPETITION OF SYMMETRIES
IN A HOMOGENOUS DEVICE

A. Simplified example: Eigenvalue problem with real
coefficients

In order to explain the principles of reasoning and to in-
vestigate the general tendency in the transition between

modes with dominant Cartesian and dominant rotational
symmetry, we start from the simplified case of Eq.(6) and
assume that the coefficients in Eq.(6) are real valued.

In that case the eigenvalues of Eq.(2) are known to be
also real valued. Moreover, the transverse Fourier spectrum
egskx,kyd of the eigenfunction corresponding to some eigen-
value lg is a generalized function(distribution) which is
nonzeroonlyon a curveSgskx,kyd, defined as a set of zeros of
the polynomial(3) [41].

Therefore, the characteristics and the anisotropy of an
eigenfunction iscompletelydetermined by the topological
and symmetry characteristics of the curve(3) in skx,kyd space
for a defined value oflg. Obviously, it depends on the par-
ticular value oflg.

For example, in the isotropic case(10) with real coeffi-
cientsbi, the eigenfunctions are known to be also eigenfunc-
tions of Helmholtz equation, being generalized function of
the form

egskx,kyd = expsinfSddS, s12d

whereS is a circle of radiusRg which is connected tolg by
the relationlg=b1Rg

2+b2Rg+b3, dS is a Dirac d function
which is zero everywhere except onS, andfS is an angular
coordinate onS [43].

We can characterize the spatial anisotropy of Eq.(6) by
comparing it with the nearest operator of type(10). The sur-
faceOskx,kyd for dispersion relation(3) (that corresponds to
the surface of possiblelg for an infinite case) is displayed in
Fig. 5(a) for some model coefficients in Eq.(6). The example
of its intersection by a plane corresponding to some eigen-
valuelg for a finite case is also presented. As was mentioned
above the transverse Fourier harmonics of the corresponding
eigenfunctioneg are nonzero only on the curveSg obtained
from this intersection.

Figure 5(b) shows such curvesSg for the eigenfunctions
in transverse Fourier space for values ofl1 corresponding to
the first unstable eigenfunctions of devices of different size
(solid lines). The corresponding curves for the closest opera-
tor of type(10) are displayed as dashed lines. For an isotro-
pic operator(10) lg can be found analytically for given ra-
dius of the apertureR. It can be easily shown[43] that Rg
=mg/R, wheremg is gth zero of zero order Bessel function
J0smd. Therefore, the outermost curve corresponds to a small
device, the inner ones correspond to devices of larger aper-
ture. It is worth noting that similar plots are obtained when a
spectrum of eigenmodes for a single device is considered.

It is evident that the curves with a large diameter—i.e.,
the ones corresponding to small devices—are quite similar to
circles. In this case, the anisotropy of Eq.(3) is not notice-
able and the eigenfunctions can be described by distributions
similar to Eq.(12), resembling flowerlike pattern. From the
second point of view mentioned above, these curves present
the spectrum of high-order eigenmodes—i.e., modes with
smaller eigenvalueslg—for a single device with fixed diam-
eter. This implies that the eigenfunctions of higher-order
eigenmodes are less anisotropic.

If the diameter is increased, the topmost eigenvalue tends
to the absolute maximum and reaches it in the limit of infi-
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nite diameter, when the corresponding curveSshrinks to two
points in transverse Fourier space, giving a stripelike pattern
of the form expsikmr d+c.c in sx,yd space[where ±km are
the coordinates of the maxima of the surface(3)]. From this
note, one can easily find two manifestations of spatial aniso-
tropy. The first one is obvious for very large diameters, when
the line S breaks into two disconnected ones, each of them
having the center at ±km. At that two transverse counter-
running waves appear in thesx,yd space. The second mani-
festation stems from the fact that each connected part of the
curve deviates from an ideal circle. Although an analysis is
difficult in the general, for the simple case when the curveS
can be transformed to a circle by a linear coordinate trans-

formation(the boundary conditions in real space will then be
zero on an ellipse instead of a circle), the solutions of the
problem can be expressed in terms of Matheiu functions.

B. The laser case: Complex coefficients

For the laser equations, the coefficientsaij are complex
valued. In this case the eigenvalues are also complex and it is
not possible anymore to represent the eigenfunctions as dis-
tributions on some curve, defined as a cross section of a
surface at some plane[41,43]. Therefore, a simple represen-
tation like one in Fig. 5 is not possible. However, we show
below that the qualitative behavior of the eigenfunctions will
be the same as in the preceding case.

This statement is illustrated by Figs. 6 and 7. It is easy to
see that for a small diameter the first mode is rather rotation-
ally symmetric and is similar to a fundamental one for an
empty cavity[Fig. 6(a)].

The second eigenmode[Fig. 6(b)] has zero intensity in the
beam center and the emission is formed by an even number
of “petals” arranged in a circular manner. It is nearly degen-
erate in growth rate with the first one. If the device diameter
is increased, this mode becomes the first eigenmode and the
number of petals increases[Fig. 6(c)]. The image illustrates
that it is not necessary to invoke a current enhancement at
the edges due to the peculiarities of the VCSEL design[7,39]
in order to explain the appearance of such modes. Neverthe-
less, we will see in the following section that even a slight
current crowding can shift the eigenvalue of a flowerlike
pattern to the top even in the case when its growth rate in a
homogeneous device is not the maximal one.

If the diameter is increased, the anisotropy of the operator
coefficients becomes important, as shown in Fig. 5. Thus, the
first mode is a stripelike pattern(Fig. 7). The pattern in the

FIG. 5. Illustration of the qualitative behavior of eigenfunctions.
(a) Surface of the real part oflg in dependency onskx,kyd defined
by Eq. (3) for model parametersa00=−52,a02=10.2,a20=9.18,a22

=−1,a04=−0.5,a40=−0.5.(b) corresponding curvesS of eigenfunc-
tions for different values oflg (solid lines). They are obtained as
cross sections of the surface in(a) with planeslg=const [one of
which is shown in(a)]. A decreasing sequence oflg can be obtained
by either increasing the diameter and considering the largest eigen-
value l1 for each diameter, or by considering the sequencelg for
g=1,2, . . . for adevice with fixed diameter(in both cases thelg are
assumed to be an ordered setl1ùl2ù . . ., the first value giving the
most unstable mode). The same curves are shown for the closest
operator of type(10) for comparison(dotted line).

FIG. 6. The two first eigenmodes of the homogeneous operator
(6) with boundary conditions(7),(8) for the case of rather small
aperture and the detuningd=10 nm. (a),(b) 2R=12.5mm, differ-
ence in the threshold of the first and the second mode is 2.6%.
(c),(d) 2R=20 mm, difference in the threshold is 0.5%.
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Fig. 7(a) is not self-similar after a transverse Fourier trans-
form [Fig. 7(b)], but has a rather pronounced Cartesian sym-
metry, especially far from the boundary. However, neighbor-
ing eigenmodes can have a completely different symmetry,
as shown in Fig. 7(c). The second mode, having a very close
threshold value, is a Laguere-like or Bessel-like function,
with the same flowerlike picture in the far field.

With further increasing diameter, the difference in growth
rate between neighboring modes tends to zero, and one can
find more and more eigenmodes, falling in a fixed interval of
growth rates above threshold. As in the case shown in Fig. 5,
these modes keep the asymmetry of the operator(6), and the
Cartesian symmetry of the first mode becomes more evident
[Figs. 7(e) and 7(f)].

The number of stripes as well as number of spots in flow-

erlike pattern strictly depends on the coefficients ofÔsx,yd
which in turn depends on the parameters of the original sys-
tem. The main length scale selection mechanism in a frame-
work of the basic model is connected to the detuning. With

increasing the detuning, on the analogy of the infinite case
[16,44] the spatial wave vector with maximal growth rate is
increased, leading to increasing number of spots in the finite
case, both for stripelike and flowerlike patterns. For the
negative detuning, a pattern like in Fig. 6(a) appears first in
the sequence of eigenfunctions.

V. THE INHOMOGENEOUS CASE

As it is shown in Appendix B, inhomogeneities of index
and small inhomogeneities of current in the device can be
modeled by simple additive terms, with the operator(11)
instead of Eq.(6). The boundary conditions(7),(8) must be
kept to provide a discrete set of eigenmodes.

The most noticeable type of pump inhomogeneities is
pump crowding, appearing for large enough device aperture
[7,29,39]. Due the construction of the device, the pump is
more pronounced near the edges of aperture. In the numeri-
cal simulations, such type of inhomogeneity is modeled by
the following function:

dm = 5m expS−
sur u − R0d2

2s2 D , ur u , R0

m, ur u . R0,

s13d

where r =Îx2+y2, m is the depth,R0 is the width of the
profile, ands defines the half-width of the “transient area.”

For a tiny inhomogeneity, the shape of eigenfunctions of
operator(11) is almost not changed compared to Eq.(6), and
the shift of eigenvalues is also very small. However, for large
enough diameter, such as that presented in Figs. 7(e) and
7(f), eigenvalues are very close together, and even small in-
homogeneity can change the order of eigenfunctions.

In this “perturbative” case, the shift in Relg depends on
the overlap integral of the inhomogeneitydmsx,yd with the
corresponding eigenfunction of Eq.(6) [45]. Figures 8(a) and
8(b) show the first eigenmode of operator(11) with tiny gain
crowding for parameters as in Figs. 7(e) and 7(f). This mode
would be the eigenmode of operator(6), with a threshold
different only by 1.5% from the first mode, shown in Figs.
7(e) and 7(f). Thus, tiny inhomogeneity leads to preference
of flowerlike pattern instead of stripelike. The stripelike pat-
tern does not disappear, but it is shifted to the bottom in the
set of eigenvalues.

Along with pumping inhomogeneities, there are several
types of inhomogeneities of the refraction index. The most
pronounced is the index gradient due to oxide aperture
[38,46]. Numerically, it is realized by adding a termni pro-
portional to Eq.(13) which is sharp enoughss=0.01Rd, and
R0 close toR. In this case, the circular symmetry of inhomo-
geneity is strong enough to hide the anisotropy of the opera-
tor Osx,yd, and the pictures are analogous to Figs. 8(a) and
8(b).

Another inhomogeneity is also often encountered in some
devices: it is a constant gradient of the cavity length related
to peculiarities of fabrication. This gradient, if not too strong,
is equivalent to the gradient of index[47,48], because the
additional phase shift introduced by such an inhomogeneity
can be compensated by introducing a term of a typeinisx,yd.

FIG. 7. The first(a),(b) and the second(c),(d) eigenmodes for
the diameter 2R=36 mm (d=6.5 nm, difference in the threshold of
the modes is 0.09%). In (e),(f) the first eigenmode for 2R=55 mm
(and the samed) is shown. The subsequent several modes for the
case(e),(f) have the same symmetry. The first flowerlike eigenmode
in this sequence is forg=11, and it resembles the one shown in Fig.
8. (a),(c),(e) are the near field intensity distribution,(b),(d),(f)—the
far field intensity distribution.
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As above noted, small enough inhomogeneities leads to
an exchanges of eigenfunctions without significant changes
of their shape. The situation becomes different, if the ampli-
tude of the inhomogeneities is increased. This is evident in
Figs. 8(c)–8(f), where we model a linear index gradient,
keeping at the same time gain crowding. It is clearly seen
that the eigenfunction in the case of Figs. 8(c) and 8(d) pre-
serves the shape of stripelike structures, and becomes even
more Cartesianlike, than Figs. 7(d) and 7(e) (since the spots
in far field are more pronounced). Again in this case, one can
see a competition between the eigenmodes with completely
different symmetry properties, as in the case of Figs. 7(a) and
7(c). But now these modes are Cartesianlike[Figs. 8(c) and
8(d)] and spotlike[Figs. 8(e) and 8(f)]. Very slight changes
of s in Eq. (13) leads to a change of the order of these
modes.

One can see that low order eigenmodes for both homoge-
neous(Figs. 6 and 7) and inhomogeneous(Fig. 8) index and
pump profiles demonstrate only partial filling of the aperture.
However, the subsequent higher order modes often fill the
aperture more homogeneously, even for inhomogeneous

case. This is illustrated in Fig. 9, where the 1st, 5th, and 10th
eigenmodes are presented. This figure provide the analogy
with Fig. 4 which also shows a more homogeneous aperture
filling with increasing current.

VI. DISCUSSION AND CONCLUSION

In this paper the competition of symmetry properties of
patterns in VCSEL with wide circular aperture is considered.
Experiments yield patterns based on rotational symmetry or
on Cartesian symmetry for very close operating conditions.
Two different kinds of symmetry are shown to be created by
different sources: the rotational symmetry of the device ap-
erture and the Bragg reflector anisotropy, selecting a certain
direction in the transverse plane. The system was analyzed in
the framework of linearized equations describing a VCSEL
near threshold with lateral boundary conditions correspond-
ing to the fast decay of the field towards the boundary. The
linearization and approximation procedure(described in Ap-
pendixes A and B) gives an operator(11) acting in sx,yd
space. The eigenfunctions and eigenvalues of this operator
give the pattern with a maximal growth rate at threshold,
appearing first after onset of generation.

The solution of the eigenproblem is a discrete set of func-
tions, the separation between their eigenvalues is decreased
with increasing device aperture. It is shown that for a small
aperture the preferred type of pattern is a “fundamental” one,
with a maximum in the center and nearly rotationally sym-
metric shape. For larger diameter, more complicated patterns
appear at threshold. It is noticeable that flowerlike patterns
which are located mainly near the boundaries often have the
smallest threshold despite of there are no inhomogeneities in
operator, making this kind of patterns preferable. With fur-
ther increasing the diameter, the spatial anisotropy of the
system becomes important, and smallest threshold has in this
case stripelike pattern, aligned along the anisotropy direc-
tion.

However, eigenfunctions with completely different sym-
metries, namely with very high order of rotational symmetry,
have eigenvalues(and therefore thresholds) very close to
stripelike patterns, making the symmetry of pattern at the
threshold very sensitive to small inhomogeneities both of the
refraction index and pumping level across the cavity. Very
small inhomogeneities only shift eigenvalues without chang-
ing of the shape of eigenfunctions, and this often leads to
altering the order of patterns with different symmetry prop-

FIG. 8. (a),(b) first eigenmode for pump crowding, given by Eq.
(13) with s=0.25R, m=6.0310−4, R0=0.95R and other param-
eters as in Figs. 7(e) and 7(f). (c),(d) the first and(e),(f) the second
eigenmodes for pump crowding as in(a),(b), and index gradient
ni =2.8310−4x. The second one has threshold 2% higher but be-
comes the first fors=0.1R. (a),(c),(e) is the near field,(b),(d),(f) is
the far field. The size of the device is as in Fig. 7.

FIG. 9. The first(a) and two subsequent, namely, 5th(b), and
10th (c) eigenmodes for 2R=36 mm, and other parameters as in
Figs. 8(c)–8(f). The eigenmodes with higher threshold fills the ap-
erture better, in analogy with Fig. 4.
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erties. In a first approximation, for such a tiny inhomogene-
ities the preferred pattern at threshold depends on the overlap
integral of the corresponding eigenfunction with the inhomo-
geneity which leads to the preference of “rotationally sym-
metric” patterns(in the sense discussed in Sec. III) for the
most often encountered circularly symmetric inhomogene-
ities. It should be noted, that very sharp transitions between
different spatial patterns of the same symmetry due to strong
sensitivity to small parameter variations was reported for op-
tical parametric oscillator[51].

If the inhomogeneity is increased, eigenfunctions change
significantly their shape. For example, for a gradient inho-
mogeneity of index along a fixed direction, patterns which
only partially fill the aperture and concentrate around one
side of it are preferable. Among them are deformed stripelike
patterns[Figs. 8(c) and 8(d)] and spotlike patterns[Figs. 8(e)
and 8(f)]. The subsequent eigenfunctions for that case fill the
aperture more homogeneously(Fig. 9) which gives some ex-
planation the increase of homogeneity of emission with in-
creasing of pump level, observed experimentally(Fig. 2).

The form of the linear operator(11) is quite general and
does not depend on the concrete model from which it was
derived. As it is shown in the paper, if the operator is spa-
tially anisotropic, it is enough to confine oneself by a linear
approximation to describe qualitatively the competition of
the symmetries of patterns. Moreover, as it was shown in
Refs. [9,18], the patterns obtained in a VCSEL can be very
complex, but can be explained, nevertheless, as eigenfunc-
tions of Helmholtz equation of high order, or a combination
a few of such functions. With the linear operator(6) or (11)
derived in the present work, one can easily obtain the eigen-
functions which resembles eigenfunctions of high order of
Hemholtz equation, but having the lowest threshold(largest
real part of eigenvalue).

The main physical mechanism, defining the length scale
of resulting patterns in the underlying model is the detuning
of the cavity resonance from the gain maxima. Unfortu-
nately, such a simple model is not able to explain the experi-
mentally observed patterns at a negative detuning. However,
some mechanisms which are not accounted for by the under-
lying model, can be simply introduced by just a shift of the
detuning. One of them is local field correction[49,50] which
effectively changes the detuning by quantitybd, whereb is
constant, proportional to the ratiol / l of wavelength of the
laser and the thickness of the active layer and can be there-
fore noticeable for VCSEL, where latter is small. Therefore,
for numerical simulation in this paper the value of detuning
was adjusted to give approximately the same number of
stripes in the device aperture as in the experiments. It should
also be noted that there are always at least two concurrent
eigenfunctions with the same eigenvalue, with no competi-
tion in a linear approximation. To describe such a competi-
tion as well as an influence of transverse hole burning which
is also become important already very close to threshold
[26,27], nonlinear terms should be added. All this is being a
subject of subsequent investigations.
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APPENDIX A: THE BASIC EQUATIONS

The underlying model was introduced and considered in
Refs. [10,11,25,26,48]. The system consists of evolution
equations, describing the behavior of the slow field ampli-
tudeest ,x,yd and population inversion profiledst ,x,yd:

ė= − L̂e+ Ĝsded, sA1d

ḋ = − d + m − Imfsi − adepL̂sdedg, sA2d

wherek is the field decay rate, anda is the linewidth en-
hancement factor[52]. As noted above we restrict the con-
sideration to only one polarization component of field. In
comparison with Refs.[10,11,25,26], we allow here for the
dependence of the pump parameterm and of the refraction

index n on sx,yd. The operatorsL̂=ksF̂L /FL0+ iad+ ilni and

Ĝ=ks1+iadsF̂G/FG0dL̂ describes loses and gain in the laser.

The operatorsF̂L=1−F̂2 and F̂G=s1+F̂d2 are related to the

operatorF̂ of propagation of the light in one half part of the
cavity (both parts assumed to be identical) calculated in
paraxial approximation and including the anisotropic reflec-
tion from the Bragg reflector as well the propagation in the

spacer layer.F̂ is a function inskx,kyd space[here,skx,kyd are
variables conjugated tosx,yd by the transverse Fourier trans-
form (4), andFGsLd0=FfGsLdgskx=ky=0d]. The term including
ni accounts for an inhomogeneity of the refraction index in
index guided devices. It is introduced accordingly to well
known effective index approach[47], when an index gradi-
ent is averaged over the cavity length, giving the same total
phase shift as the initial one. The coefficientl =tv /n0 is
expressed via the optical frequencyv, time passaget of light

through the cavity, and the mean indexn0. The operatorL̂
describes the gain contour shape. Here we take a simple

Lorentzian profile of the gain lineL̂→
F

Lskx,kyd=1/s1+(d
−Vskx,kyd)2/g2d, where d=vg−vc is the detuning of the
peak of the gain spectrum from the cavity resonance,g de-
termines the linewidth of the gain, andVskx,kyd is a cavity
frequency for every tilted waveskx,kyd.

To derive the linear evolution equation of the form(1),
using the basic equations(A1) and (A2), we take into ac-
count that at the laser threshold two branches of the steady
state solutions cross each other: the zero solutionse=0d, and
the nonzero lasing one. Because of the lasing solution at the
cross-section point is characterized bye=0 and d=m the
further analysis is drastically simplified giving the following
diagonal operator of the linearized problem:
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Ô = SÔ11 0

0 Ô22

D . sA3d

The diagonal form of Eq.(A3) shows, that the fielde and the
carrier densityd are independent of each other at the laser

threshold, and as it easy to see, the spectrum forÔ22 lies
entirely in the half-plane Relø0, hence we can consider

only the equation for the field(1) (with Ôsx,yd;Ô11). Ôsx,yd
includes the current density at thresholdd=m. From Eqs.

(A1) and (A3) the explicit value for the operatorÔsx,yd is
defined by the following action on the fielde:

Ôsx,yde= − L̂e+ Ĝsm 3 ed. sA4d

In the case, when there are no inhomogeneities of pumpm
and indexni, Eq. (A4) can be written in transverse Fourier
space:

Oskd = − Lskd + mGskd. sA5d

APPENDIX B: APPROXIMATION FOR OPERATOR

To approximate the nonlocal operatorÔsx,yd by a partial
differential operator of the type(6) we consider at first the
homogeneous case, described by Eq.(A5). We take into ac-
count that for small values ofuk u the operator with Fourier
image(A5) can be approximated by the polynomial

Ôsx,yd = − o
i,j=0

N

aijkx
i ky

j sB1d

with aij being the coefficients of a Taylor series expansion of
Eq. (A5). The value ofN in Eq. (B1), must be large enough
to correctly approximate Eq.(A5). Due to the invariance of
the whole problem against reflections insx,yd plane, the op-
eratorOskd must be an even function of bothkx andky and
the coefficientsaij are complex quantities, in general, satis-
fying therefore the conditionaij =0 for oddi or j . Taking into
account that two tilted waves with nonzero value ofk must
have a minimal threshold[the maximal value of ReOskd] in
accordance with the solution of the linear problem for the
infinite case[10,11,25,26]), the smallest proper value ofN in
Eq. (B1) is equal to 4.

It is worth to note that in generally the curvesLskd and
Gskd can be obtained only numerically. Hence, the coeffi-
cientsaij need to be evaluated by a fitting procedure of the
numerically obtained curveOskd. For our case, the best pre-
cision is given by an approximation of real and imaginary
parts of Eq.(B1) separately by different methods.

Since the tilted wave selection mechanism described by
the approximated operator should select the same harmonics
at threshold as the exact one, fitting of real part is based on
the global and local extremal points of ReOskd [see Fig.
5(a)]. We choose for that the zero points0,0d, two points at
every axess±kx0,0d and s0, ±ky0d and four points at the bi-
sectricess±kbi , ±kbid. In the isotropic case all the points lay
on a cycle withukx0u= uky0u=Î2ukbiu with the same value of

ReO at these points. Denotingor0;ReOs0,0d, orx

;ReOskx0,0d, ory ;ReOs0,ky0d, and obi;ReOskbi ,kbid we
have

a40
srd = sor0 − orxd/skx0

4 d,

a04
srd = sor0 − oryd/sky0

4 d,

a22
srd = sa0or0 + axorx + ayory + abiobid/skxy0

4 kx0
4 ky0

4 d,

a20
srd = − 2sor0 − orxd/skx0

2 d,

a02
srd = − 2sor0 − oryd/sky0

2 d,

a00
srd = or0,

where aij
srd=Reaij , and a0=−kbi

4 kx0
4 +2kbi

2 kx0
4 ky0

2 −kbi
2 ky0

4

+2kbi
2 kx0

2 ky0
4 −kx0

4 ky0
4 , ax=kbi

4 ky0
4 −2kbi

2 kx0
2 ky0

4 , ay=kbi
4 kx0

4

−2kbi
2 ky0

4 ky0
2 , abi=kx0

4 ky0
4 .

For an approximation of the imaginary part ofOskd, a
standard least square fitting method was used(A5). The error
between the exact function(A5) and the approximation(B1)
for uk uø1 is less than 1%. It is also should be noted that
changing the coefficienta00 leads to shift oflg for all g as a
whole. Since we are interested here only in the order of
eigenfunction it can be chosen arbitrarily. We chosea00 in
such a way, thatOs0,0d=0. In the anisotropic case(10)
a40=a04=a22/2;b1 anda20=a02;b2.

For convenience, we give here the numerical values of
coefficientsaij for the cavity described in the Sec. II, and the
following parameters of underlying system:k=2.9
31011s−1, a=3, d=10 nm,6.5nm. For the former value of
the detuning they area00=0, a20=1.165−0.606i, a02=1.166
−0.599i, a22=−1.42−0.0568i, a40=−0.67−0.0071i, a04
=−0.72−0.0387i and for the latter one:a00=0, a20
=1.0397−0.606i, a02=1.005−0.56i, a22=−2.04−0.057i, a40
=−0.991−0.0072i, a04=−1.0369−0.0387i . It is noticeable
that the anisotropy of coefficients is quite small.

To write the approximation of operatorÔ in the case,

whenm andni are functions ofsx,yd, we note thatL̂ can be

written in the formL̂= L̂hom+ ilni, whereL̂hom describes the
device with the homogeneous refractive index. In addition,
we suppose that the pump profilemsx,yd=m0+dmsx,yd con-
sists of a constant termm0 and a small spatially dependent

term dm. Then, one can expand the operatorĜ into series

such as the operatorÔ in Eq. (B1) (but with coefficientsgij),
and neglect all the derivatives ofdm in Eq. (A4). As a result,
the Eq.(A4) takes the following form:

Ôsx,yde= − L̂home+ mĜe+ silni + g00dmde. sB2d

It is clear from above thatg00=ks1+iad. Denoting −L̂hom

+mĜ asÔhom, we obtain
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Ôsx,yd = Ôhom+ silni + g00dmd. sB3d

Taking into account that the expression for the homogeneous

part of the operatorÔhom has been already obtained by Eq.
(6), and incorporating the homogeneous part of pumpingm0
into the coefficienta00 in Eq. (6) for simplicity, we get the
inhomogeneous approximation(11). However, it should be
noted again that(11) is valid only for only small inhomoge-
neity dm, such that its spatial derivatives can be neglected
compared tom0. Besides,ni is also to be small enough to
make the effective index approximation valid. The last re-
striction, however, is not so strong as the first one[47].

APPENDIX C: THE METHOD OF NUMERICAL SOLUTION
OF EIGENPROBLEM (2)

1. Decomposition of fourth order eigenproblem into a
generalized eigenproblem of the second order.

Our method of solution of the problem(2) is based on the

fact that the operatorÔhom can be represented via multipli-

cation of two operatorsP̂1,P̂2 of the second order with con-
stant coefficients

Ôhom= P̂1P̂2e− l1 = P̂2P̂1e− l1 sC1d

where P1= = ·sc12^ = d,P2= = ·sc21^ = d. Here ci j are ma-
trices defined later in(C7) and (C8), ¹ is an operator of
gradient in spacesx,yd, s·d represents a scalar product and^

means a convolution product by outer dimensions:sa^ bd jk

=oi=1
2 aijbki. The second equality in Eq.(C1) means thatP̂1

and P̂2 are commutative. By introducing an auxiliary func-
tion

e1 = P̂2e, sC2d

or

e1 = P̂1e, sC3d

one can present the initial eigenproblem as a generalized
eigenproblem of the type

P̂e− lgde= 0 sC4d

for vector functione=se,e1d. Matrix d is a degenerate matrix
d=diags1,0d (here and later diags· , ·d means a diagonal ma-
trix with corresponding elements on the diagonal), and the

operatorP̂ is defined as following:

P̂ = ¹ · sc ^ ¹d + a. sC5d

Herea is a 232 matrix,c is a rank four tensor which can be
described by four 232 matricesci j . a andc for the case(C2)
are determined by the following formulas:

c11 = 0, c22 = 0, sC6d

c12 = diagfsa22 + l0d/2,a04g, sC7d

c21 = diagfsa22 − l0d/s2a04d,1g, sC8d

a = Sa00 − l1 + ini + m l2 − l3
l2 + l3 − 1

D , sC9d

wherel i are given by expressions

l0 = Îa22
2 − 4a40a04, sC10d

l1 = sa04a20
2 − a22a20a02 + a40a02

2 d/l0
2, sC11d

l2 = s2a04a20 − a22a02d/s2l0d, sC12d

l3 = a02/2. sC13d

The problem in the form(C4) and(C5), is suitable for solu-
tion by the finite difference method(see second part of this
Appendix).

The above mentioned decomposition is not unique. The

operatorP̂1 can be multiplied by any constant, whereasP̂2
needs to be divided by the same constant. In addition the
matricesc12 andc21 can be changed to

c12 = diagfsa22 − l0d/2,a04g, sC14d

c21 = diagfsa22 + l0d/s2a04d,1g, sC15d

which corresponds to a selection ofe1 according(C3). For
the numerical procedure it is most natural to solve the system
with simple boundary conditions(see second part of this
Appendix). It is known from general theory[41] that for the
system(C4) two boundary conditions satisfying a so-called
Lopatinsky (or ellipticity) condition are required. We con-
sider here the conditionse=0 on the boundary. For the initial
eigenproblem(2) this condition one1 implies a condition of
the type(8) with t defined assa22± l0d / s2a04d with minus for
Eq. (C2) and plus for Eq.(C3). Because in the former case
utuø1, whereas in the latter oneutuù1, these cases can be
considered as bounding of the isotropic boundary condition
with t=1 from bottom and from above. As Fig. 10, shows,
these two cases are very close to each other for both large
and small diameter of the aperture. Therefore, both of them
can be considered as very good approximation of the caset
=1. We note again, that this result is valid if the anisotropy of

operatorÔhom is small as in the present case.

2. Numerical solving procedure

The operatorP̂ in the form(C5) is suitable for solving the
eigenproblem numerically, both for homogeneous(6) and in-
homogeneous(11) case, by a finite element method[54]. A
set of appropriate test two-component vector-functionsfi is
selected, and the system(C4) is presented as a set of integral
equations

E
V

kfi,sP̂ − lgddeldxdy= 0, sC16d

where ke,fil is a scalar product in two dimensional space,
andV is the circle with radiusR. Representation(C5) allows
to integrate Eq.(C16) by parts, giving linear finite eigen-
problem for a vectorhpij:
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o
j

pjE
V

k¹f j,sc ^ ¹dfil + kf j,afildxdy

− lgo
j

pjE
V

kf j,dfildxdy= 0, sC17d

where zero boundary conditions(7) and (8) are taken into
account, andhpij represent approximate decomposition ofe

in a finite basisfi: e=o j pjf j. The system(C17) was solved
numerically by Arnoldi method[55], using Matlab PDE Toll-
box.
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